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Stationary two-dimensional electric current distributions in an anisotropically conduct- 
ing medium having a nonlinear Ohm’s law, are described by the system of equations for- 

mulated in Cl]. Depending on the character of the nonlinear relation between the cur- 

rent density and the electric field,and on the value of the Hall parameter B , this system 

can be of an elliptic or hyperbolic type. For p = 0 the electrodynamic equations are 

analogous to the equations for potential gas dynamic flows, therefore by analogy these 

problems can be solved by the hodograph transformation, as it is done in gas dynamics 
p]. The hodograph transformation generalized for the case B # 0 is applied below to 

simple two-dimensional problems. The relation between the type of system and the po- 
sitive definiteness of the symmetric part of the differential conductivity tensor, is estab- 

lished. Linear equations in the hodograph plane of an effective electric field are obtained 

for the potential and for a function of the electric current. Boundary conditions are for- 
mulated in terms of each of these functions on the image lines for the electrode and di- 
electric regions with straight-line boundaries, For the elliptic case the solution of two 
asymptotic problems are obtained and examined : (1) the field distribution in a strip 
between a perfectly conducting wall and a dielectric wall: (2) the current concentration 
in the region of a semi-infinite electrode edge. The possibility of corresponding solu- 
tions for the hyperbolic case is discussed. For p # 0 exact solutions for particular depen- 
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dence of the electrical conductivity on current density, corresponding to the hyperbolic 
region, are obtained by the method of characteristics used in [3, 41. There are reasons 

for assuming that the distribution is unstable for hyperbolic modes [l, 3- 51. For homo- 

geneous states of a nonequilibrium plasma, the p value corresponding to a change ofthe 

system type, also determines the ionization instability limit. In the general case of non- 

homogeneous states the instability of hyperbolic and mixed solutions is not proved. In 

the elliptic region the equations describe stable current distributions, therefore the con- 

struction of elliptic solutions is of the greatest physical interest. 

1. Let us consider an incompressible conducting medium moving at velocity V (z, 
y) = Vxer + V,e, in a homogeneous magnetic field B == Be,, B = const > 0. 
If the magnetic Reynolds number is small and the current density vector j lies in the 

plane XY and is independent of the coordinate c, the system of electrodynamic equa- 

tions is expressed by 

89, I ‘3y - aq,, I dx = 0 (1.1) 

ix = (1 + fi”)_‘G (9, - Pq&, 
(q=E+VxB) 

iy = (1 + PY c (P4X + 9s) 

Here q is the electric field in the concomitant frame of reference. The second equa- 

tion of (1.1) follows from the condition rot (V X B) = 0. In the general case the 
electroconductivity o and the Hall parameter b depend on the current density, and 

according to Ohm’s law the relation between the moduli of the vectors j and q is given 

by the formula 
j = [1 + p2 (j)l-‘z’z o (j) 4 (1.2) 

The type of system (1.1) is determined by the sign of the expression 

A = dln(il4ldlni P2 - - 7 hd In (i / 5) / d In q 32 _L 
[dIn(s/;j)/dlnij2 4 [dIn(s/;jjldlnq]z 4 

0.3) 

(h = d In j / d In q) 

For A > 0 the system type is elliptic and for A < 0 it is a hyperbolic one. In the 

sequel we shall assume h > 0 which corresponds to a monotonically increasing depen- 
dence j (q) taking place in many practically interesting cases. Besides, we take p = 

con&. This assumption agrees qualitatively with the characteristics of a partly ionized 

nonequilibrium plasma, the Hall parameter of which is much less sensitive to changes 

in the current density compared with the dependence of (T (j). The application ofthese 

assumptions aliows the condition A > 0 to be set in the following form: 

P<P* =qmI1.-Aj 0.4) 

Here fi* is the critical value of the Hall parameter, beyond which the type of system 

(1.1) changes. In the case /3 = 0 the hyperbolic region corresponds to the range of 
q or j changes, where h < 0, i.e. a negative differential conductivity occurs. For 
h > 0 the volt-ampere characteristic j (q) does not contain falling parts. However, 
in this case also the hyperbolic character of the system for p > p, is related to an 
onset of negative differential conductivity in wider meaning of this term. The differen- 
tial conductivity of an anisotropic conducting medium is characterized by the tensor od 
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which can be introduced by linearizing the Ohm’s law 

5 =dh, lbdf =\dj,/dqpg 

Let us decompose the tens&r bd into its symmetric and antisymmetric parts: od = US + 
6,. For p = const the matrices of these tenscrs in the system of the principal axesof 
the tensor b, are of the form 

(I. 5) 

A= l/s (3\. t 1) cr / (l+p2), II = [(l +-~“)/(1+~*“)P~ sign (h- 1) 

The requirement for the tensor Q, to be positive-definite is expressed by H2 < 1 and 
is in agreement with the condition (1.3). The principal axes of the tensor u, are direc- 
ted along the bisector of the angle formed by vectors q and j and the normal to this 
bisector. In the case of a linear medium H = 0 and the tensor u8 is isotropic. Let 1 
be an arbitrary direction in the physical plane. Then the derivative i3j, / dq, has the 
form 

djl/dql = l(ude1) = I(QJ.l) 

Here use is made of the fact that the ~nvolu~o~ 1 (u,s1) vanishes. It follows from 
the results obtained that the elliptic character of the system (1.1) is equivalent to a mo- 
notonic increase of jr with increase of ql for all directions of 1. 

Let oi* be the basis of the principal axes of the tensor oar so the vector ei* bisects 
the angle between q and j. We represent the unit vector 1 in the form 

l=cos~el*+sinXez* 

Then the condition aji ! dq, > 0 for 8 > $* will be violated in the following reg- 
ions of variation of the X -angle : 

Ix I<‘/zw Ix-n l<l/20 O<h<l 

Ix.-- v23c J<V20, Ix--2/23t I<‘/,@ @ > il 

0 < 0 = arc cos(1 I IH I)< 6 = arc tg 6 

If 1 and m are orthogonal vectors, then the Jacobian d (jl, jm) / d (ql, qm) is always 

positive for A, > 0 and the vectors j and q possess one-to-one relation. At the same 
time the Jacobian 

8 (jl, qm) I d tjm, ql) = I(1 t- H COS 22) 1 (1 - H cos 2X)1 

for fi2 > 1 can change sign, because the angle x can assume arbitrary values as the 
direction of the vector q changes. Hence for p > fi+ there exists a region of values 
of the vector, q, for which it is impossible to define one pair of the variables (j [, qm) 

and (jm, ql) by the other. As an example, the curves of Fig. 1 illustrate the depend- 
ence of tne value lx* = jr (qXr quf I jy (0, Q,) on qr* = qx / qv for h 3 2 and differ- 
ent values of fL For fi > fi* = 2 fz a falling part appears on the curves and the line 
jX* = const can cross the curve of the function jr* (qr*) at more than one point. In 
this case, at least two sets of values I v, qx unrespond to each of fixed values jz, qv 

We shall indicate one more result of the above discussion. If for /3 > p* a constant 
component of current density j, and constant component qE( in the ambiguity region of 

the mappiug of (j,, qv) --+ (j,, qJ, are specified, it is possible to construct formally 



discontinuous solutions in the form of layers, bounded by the X zy- const planes; the 
distribution of the vectors q and j will be uniform inside each layer. Un the common 

boundaries of the layers, the values 9x and j y will undergo a jump.while the values of (7 !, 

and j, remain continuous, according to the conventional electrodynamic conditions for 

the surfaces of dicontinuity. A hypothesis was suggested in [6] according to which a 

development of the ionization instability in a nonequilibrium plasma results in the onset 
of piecewise-homogeneous structures in this plasma. 

2. On the basis of the first two equations (1.1) we intro- 
duce the stream function 1c, and the potential cp, so that 

j rot (qe,), q = - T’(I (2.1) 

Let a and y be the angles formed by the positive direction 

of the ./:-axis with the vectors q and j , respectively. These 

angles are connected by the relation 

y--a : 0 -= al-c tg 13 (2.2) 

According to p], for the case 1-i COIISI we write the first 
twoequations from (1.1) in orthogonal curvilinear coordinates 

associated with the lines of the vector q 

8j I ds - /3j& i Lk + jdu / r3n + I’,Oj /I on ~7 0 
(2.3) 

dq / an - qda I 8s = 0 

Fig. 1 

The operators C? ,’ Js and i, i: (Jlz indicate differentiation in 
the direction ot the vector q and of its normal, respectively. 

Equations (2.1) are equivalent to the relations 

‘V I as = - (21 aq 1 an r= 0, (I$ / dS 7 - j sin 0. t;$ ,’ i//l _= j cos 0 

From these relations we obtain the following formulas: 

ag / cis = J (q&$ I da - j sin Oo,cp I da), 8q i i)?z :: Jj cos (hq ‘ibid (2.4) 

da I OS = J (j sin 8 &p I Oq - qd$ I dq) 

cia i dn== - Jj cos O&r i dq 

J =: I, (q. a) / a (I@, (I) 

Assuming J + 0, after substituting (2.4) into (2.3) and eliminating J , we obtain the 

following linear system (*) : 

(2.5) 

Since 0 --_ const., we can replace the operator i, : ’ ~JU by d / 017. Further we use the 

variables of a “mixed” hodograph !r, 1,). We eliminate in turn the functions CP and $ 

from (2.5) and obtain the second order linear equations 

*) Linear system of equations in the plane of the independent variables I, :’ is examined 
in C21. 
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L (9) + (2 - A) q-‘@J / $7 + fib (h - 1 - p) q-* 0’9 / 8~ = 0 (2.6) 

L (cp) + (A - P) q-l@ I dq + p (h - 1 - p) q-*&p I dy = 0 

L = a2 I w--n, a2 + 
aq2 Q aq ar 

d In 1\. - P= d In q 

For solving boundary value problems, the system (2.5) or any equation from (2.6) can 

be taken as a basis. If l?i and r’s are the images on the plane qy of the electrode and 

dielectric regions bounaary, respectively, then 

(cp)r, = conat, (9)~~ = const (2.7) 

The fust of the conditions (2.7) must be satisfied by the potential of the electric field 

E in a fixed frame of reference. But it will be satisfied also for a potential of the effec- 

tive field q, if the normal velocity component on the electrode wall equals zero. 

In a general case the lines rr and r2 are unknown. Moreover, the boundary condi- 

tions (2.7) contain different functions which make the problems formulation more dif- 

ficult when one of Eqs. (2.6) is taken as a basis. 

The first of these difficulties is partly, and the second one fully removed, if the bound- 
ary region in the physical plane is formed by straight-line segments. On such segments 

y = const and therefore ri and J?s consist of segments which are parallel to the q- 
axis. But the positions of the ends of the segments are not always known. For a straight- 

line electrode and dielectric the boundary conditions can be formulated in terms of the 

functions I# and cp , respectively. For this purpose the relations (2.4) and conditions 

(da / dn)r,* = 0, (cos 8 da / ds + sin 8 da / dn)r,* = 0 

should be used on the electrode r,* and the dielectric rs* in the physical plane. As 
a result we obtain 

@W i dy + pq* / Wr, = 0, (drp / dy - P@cp / aq),, = 0 (2.8) 

When the solution of the problem for the function + (consequently, also for rp) is known, 
then the transition to the physical plane is accompushed by means of the equations 

The function 1’ (q: can be found from the system (2.9), using the method of quadra- 
tures. The inverse function q (r) is single-valued, if the following Jacobian is nonzero: 

(2.10) 

The quadratic form on the right-hand side of (2. IO) is a fixed sign form if p < p*. 

Therefore for elliptic solutions the Jacobian can vanish only at isolated points. For 
P > P* in the physical plane a line on which D = 0 , can exist. Using gas dynamics 
terminology such a line can be called the limiting line l7]. In the vicinity of the limit- 



ing line it is impossible to construct a single-valued and continuous distribution q (I+). 
The condition j?~ > &+ is necessary but not sufficient for the existence of a limiting 

line. Adequate examples of the hyperbolic versions are examined below. 

Further, the following model dependence is considered : 

j (q) = Aqh (A = Callst > O, h ==dlnj/dIn~-const>O) (2.11) 

For h > 1 this dependence corresponds to the behavior of a low-tem~rat~e plasma 
in the state of a nonequilibrium ionization (excluding the weak current region where, 

in fact, nonlinear effects do not occur). For h = const in Eqs. (2,6) p TT: 0 should 

be assumed. 

8, One of the simple two-dimensional current distributions is described by the func- 

tion 
(3.1) 

The function (3.1) is examined in the half-strip 

(3.2) 

and satisfies the fmt equation of (2.6) and the boundary #nditio~ 

9.j (0, y) -= 0, ‘II, (q, 0) 1: 0, (;hk?ljl/ dy + pqi?+ / dq).{+{, =: 0 

In the physical plane the solution (3. I) describes the current flow between the electrode 
(y = - 6) and the dielectric (y = 0) walls, in a strip of a constant width (- B < 

Y<O, Isi-=Ioo) l 
The sign of the constant C is chosen to satisfy the ~ndition 

j --f 0 for 2 + - 00 . The current lines leaving the electrode at an angle Y = Ym 

spread at some distance from it and continue to infinity on the right, coming into con- 

tact with the dielectric wall as z --+ 00. 

By analogy with corresponding linear problems for /3 < p* , it can be expected that 

this solution in the region - 00 < x & - 6 will define the resulting asymptotics 

for a channel with the displaced semi-infinite electrodes y = - 6, 5 < 0 and y = 
0, z > 0. The estimation of the dependence of the characterisitc lengths of the fal- 

ling parts of the current and field as x -+ - co, relative to the channel dimensions, 

on the parameters h and p , is of particular interest. 
By integrating Eq. (2.9) we find the functions z (q, y) and zf (q, y) to within the 

additive constants. The constant in the expression for y ((I, y) and the value C from 

(3.1) are found from the conditions y (q, 0) == 0, y (q, ym) = - 6. The constant 
in the expression for x (4, y) can be determined by assuming, for example, that the 
entire current I flows through the electrode to the left of the point z = 0, y = - 
6. Finally we obtain the following formulas: 

x=h {~In(q/q,)+f/*(li,-~)rcos(2y-o8f/cose$_~+ (3.3) 

28 (Y - Ym)U 

j./ = 6y,-l {“/,H [sin (2y - 0) + sin 01 - y} 

m = 26 / [(J. + l)y,l, q$j = (I / A& cos 0)“h 
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The value H is defined in (1.5). From the relations (3.3) and (2.11) we find the dis- 
tribution of the effective field, the current density and the local dissipation on the elec- 

trode 
q = q. exp (x / U i = Aq,” exp (X /hj) (3.4) 

g = J” / cr = Aqoh+l cos 0 exp (z / hg) 

h, / 6 = 2y,-1 h / (A + I), hj / 6 = 27,-l/ (1 + 1) 
hg / 6 = 2y,4 h / (h + 1)2 

It follows from (3.4) that the length of the falling part of the effective field h, will be 

a monotonically increasing, and the length of the falling part of the current density hj 

will be a decreasing function of h. The length of the decay of dissipation h, reaches its 

maximum value when 3, = 1, i. e. in the case of linear medium. Increasing the Hall 
parameter causes a decrease (by factor not greater than two) of all lengths mentioned 
above. 

Let us consider the Jacobian D of the expression (3.3) 

D = a (5, y) / 8 (g, y) = %h% (h + 1) q-l [H cm (2y - 0) - 11 

In the case fl > l.3, we have H2 > 1, and the value D vanishes in the interval((), y,~ 
at the points y = */z (8 -t 0) for H >, 1 or at the points y = VZ (n + 0 + o) for 

H < -1, where o = arc cos (1 / ( H I). Limiting lines y = const, at least one ofwhich 
lies inside the strip -6 < y < 0 , correspond to the indicated values of y in the physi- 

cal plane. As in gas dynamics g] the limiting lines form an envelope for one family of 
characteristics. The function y = y (y) determined in (3.3) has two extrema in the 

interval (0, y,,,). Therefore an inverse function y (Y) continuous on the segment l-o, 
01 and satisfying the conditions y (-6) = ym, y (0) = o , does not exist. Thus, in the 

hyperbolic region the above problem has no continuous solution. In the parabolic case 
(Ha = 1) a continuous inverse function y (y) exists., and current lines have infinite 

curvature at the limiting line points. 

We shall note the influence of nonlinear effects on the character of the current spread- 

ing in the ellipticity region. With increase in the parameter h the decrease of the func- 

tion y (y) slows down near the electrode and intensifies near the dielectric. At the same 
time, the zone which is adjacent to the dielectric and in which is > 0 , diminishes. 

4. In examining different applied problems, one of the important questions is to 
determine the asymptotics and qualitative pattern of the field near the electrode edge. 

To explain this question let us examine a model problem on the current distribution in 

the half-plane y > 0, the boundary of which consists of an electrode (y = 0, 2 < 0) 
and an insulator (y = 0, IC > 0) , both being semi-infinite. The corresponding solu- 

tion for the case of an isotropic nonlinear medium is given in [8]. 

As in the problem from Sect. 3, the region in the hodograph plane represents a half- 
strip determined by the inequality (3.2). The boundary conditions for the current func- 

tion have the form: 

I+ (00, y) = 0, ‘II, (q, 0) = 0, (h@ / dy t- pq* / aq)T=v,, = 0 (4.1) 

The first condition of (4.1) is based on the assumption of a finite total current flowing 
through any section of the electrode (5, 0) and of a conversion of the value q into 
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infinity at the end point. The structure of the first equation of (2.6) for l.t = 0 and the 
form of the boundary conditions (4.1) permit a solution to be found in the form 

11, ((r7 Y) = cl”f (r), 24 = const ( 0 (4.2) 

The constant x is to be determined later. The function f (y) must be the solution of a 

homogeneous boundary value problem 

Y” i p (1 - h) {x - h) f’ + x (1 + ‘K, - h) f = 0 (4.3) 

f (0) = 0, kf’ (Ym) + XSf (Y7d = 0 

On the basis of physical understqnding, only those solutions of the problem (4.3) 

should be considered which correspond to the negative eigenvalues of x. Depending on 

the parameters the solution can assume one of the following forms: 

f (y) = CeaY sin uy (d > 0), f (y) = CP sh z;y (d < 0) (4.41 
a = ‘/z p (A, - 1) PL - A) / h, d m= 3c (1 -I- x - h) / h - a’, 

u = j~‘<;i, v = jf- d 

If d = 0 , then f = Cy esp cy. To determine the values of x. it is necessary to use 
the last boundary conoition ot (4.3) which is reduced to the form 

hu ctg T,U = - (ha + XfJ) (d > 0) (4.5) 

hvcthT,v = - (ha + XB) (d<o) 

In fact, it is more convenient to consider the relations (4,5) as transcendental equations 

with respect to u and u, assuming x = x (u) or x = 1c (v). The latter dependences 
are determined by the formulas 

x (ZL; h, 0) = (A - 1 - 2hE - u’_(q) / [2 (1 - 4)1 (4.6) 

‘)(. (v; ?k, fi) = (h - 1 - 2x T r/r f-v”)) f 12 (1 - 4)f 

4 = j3” I &a, r (G) = (A - 1 - 2?@ + 4h (1 - E) (A: -t u-1 

The positive sign in front of the radical in the formula for x (LJ) is taken for $ > :’ (A), 
where 5’ 4 i is the value of the parameter E for which the solution v of the second 

equation (4.5) causes the function r f-~2) to vanish. Equations (4.5) are invariant with 

respect to a change in sign of the values u and u which is equivalent to the change in 
sign of the constant C. Therefore, without restriction of generality we can assume u >, 
0, v 2 0. For 0 < p < b1 the first equation of (4.5) has a discrete set of such solutions 

uk that 
?(muk E (kn, ‘fzn -i- knh k = 0, 1, 2, . . . 

The relation beteeen the values & and & has the form 

The roots Uk for k 2 I must be discarded as they do not correspond to the initial state- 
ment of the problem. If the values II were to coincide with one of these roots, then the 
function f (y) would vanish for y = nl u < y,,,. Hence an inclined straight-line insul- 
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ated wall would exist in the physical plane and this is not assumed in the statement of 
the problem. 

With j? increasing from 0 to fil the root u0 of the first equation (4.5) decreases mo- 

notonously from 1 to 0. For 6 > fir the second equation of (4.5) should be examined 

to prove its single-valued solvability. The root u of this equation increases monoton- 

ously with increase of /Ii, running along the straight half-line (0, CO) with change of P 
from PI to 00. We note that the passage through the values b = fi, occurs in a conti- 

nuous way, because the function 1c (v; h, b) is regular with respect to the parameter fl 

for @=&. 

From the relations (4,s) it is possible to find the dependence fJ, @, U) or & (B, V) 

in an explicit form. Therefore performing the calculations it is convenient to construct 
lines u = const and u = con& on the plane he. The results of this construction are shown 

P s 

8 0.6 

6 0.6 

4 0. Y 

z 0. 2 

u I 2 3 Y d R I 2 3 a 

Fig. 2 Fig. 3 

in Fig. 2. The curves 1 - 5 correspond to the following values of u, v: 

I- II = 0.3, 2 - u = U = 0, (@ = @r); 3 - v = 4, 4 - n = 2, 5 - v = 5. 

The dotted line shows the dependence b, (A). 

By integrating Eq. (2.9) we obtain the mapping of the hodograph variables on the 
physical plane. The integration constants are determined by the conditions x = y = 

0 for Q = oo. The constant c from (4.4) is fixed by specifying the integral current 

I flowing through the electrode end section, the length h of which is given. 
The final formulas for p < PI are: 

z = - G (q / qh)x-he a(u-um) I rll (r) sin uy + rlz (7) cm WI (4.7) 

y = G (q / qh)x-hea(u-y~) [Q’ (7) sin UT + Q’ (r) cos UT] 

Primes at the 

rll =xsin7+hacosr, ~s=h~cos~ 

functions nl,s denote differentiation with respect to y. In the formulas 
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(4.7) for p > p, the following substitution must be made: 

sin qm + sh z‘y,, sin uy + sh ~‘y, cos uy - 

7.2 -+ hv cos y 

and for p = pi -the substitution 

-t ch vy 

- a cos y 

The distribution of the values q, j and g mm= 1” / CT on the electrode surface is des- 

cribed by the power functions in the following form: 

q = q)&x*-p, j = &x*-S, g = Qhjh x-(,B+P) cos 0 (4.8) 

2* = - x I h, jh = Aqhh, p = 1 / (h - 3/,), s == 1” / (Lx) 

An examination shows that there are inequalities 

x<o @.>I), x<--1 fh (O<h<l) 

These inequalities are equivalent to the conditions 0 < p < 1, 0 < s < 1 which 

guarantee convergence of the integrals of the values q and i with respect to the elec- 
trode end section, and of the value g with respect to the bounded two-dimensional re- 

gion, adjacent to the compound wall. 

In Fig. 3 a family of curves depicts the dependence of the value s on the parameter 

h for different values of fl. For h > 1 the current concentration in the end part of the 

electrode increases in comparison with the case of o = COnst. This assertion agrees 

with the results obtained by numerical calculations [ 11. For h < 1 nonlinear pheno- 

mena lead to a reduced current concentration. An increase of the Hall parameter causes 

an increased concentration in both linear [9] and nonlinear cases. 

It follows from the formulas (4.7) that the ratio y / 2 depends only on y. Consequen- 

tly, the current lines form a family of similar curves with the homothetic center at the 

coordinate origin. The influence of nonlinearity on the way the current lines develop is 
analogous to that determined [S] for an isotropic medium. 

The solution obtained exists in the whole upper half-plane y >, 0 for any value of 

t$. Particularly, for fi .> p* the Jacobian I) has the form 

a (5, ?/) 
-z D = a ((I. r) 

F (y) = h2 (ash uy + vch ~)2 + Gsh2 vy - WX 

Since x < 0, then F (y) does not vanish anywhere. Consequently, the functions p (z, 
y) and y (5, y) are single-valued and continuous. Hence, unlike in the problem exam- 
ined in Sect. 3, the initial region of the physical plane does not contain limiting lines, 

The hyperbolic solution considered represents, in fact, an analytic continuation of the 
elliptic solution in the parameter b governing the type of a system. The current func- 
tion determined in this manner is regular with respect to the hodograph variables. The 
solution of correctly stated hyperbolic problems need not be smoother. At the same time, 
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for incorrect problems (including those for j3 > j3*) considered above) narrowing of the 
class of admissible solutions may represent one of methods of ~g~ari~tion [lo], 

The question of the physical realization of the solution found for 6 > fi* is closely 

connected with the stability problem of the nonuniform current distribution for super- 

critical values of the Hall parameter. 
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